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A METHOD FOR COMPUTING EXTREMAL 

MAXIMUM-RANGE THRUST-LIMITED ROCKET TRAJECTORIES 

WITH APPLICATION TO LUNAR TRANSPORT 

By A. Gary Childs, Ernest S. Armstrong, 
and Athena T. Markos 

Langley Research Center 

SUMMARY 

A computational technique has been described for the calculation of long-range 
extremal maximum-range thrust-limited trajectories for the transfer of a rocket vehicle 
between two points on the surface of an atmosphereless planet. The technique has been 
applied to compute such trajectories for the lunar surface with a vehicle having an initial 
lunar thrust-weight ratio of 5.0 for final to initial mass  ratios from 0.95 to 0.326. Gen- 
eral characteristics a r e  given in graphical form and were observed from the results for 
all the mass ratios. The extremal trajectories and controls are given for the particular 
mass  ratios, 0.65, 0.335, and 0.326. Parameters are presented which can be used (with 
a relatively simple computer program) to reconstruct completely optimal controls and 
trajectories for the mass  ratios of this study with a thrust-weight ratio of 5.0. 

INTRODUCTION 

Extensive exploration of the lunar surface may require the use of rocket-propelled 
transportation vehicles. In order to design such vehicles and plan exploration missions, 
it is helpful to know the optimal relationships between fuel and range. These relation- 
ships a r e  especially useful when long range flights a r e  involved. 

Manci (ref. 1) has considered the minimum fuel problem for fixed range and Childs 
and Armstrong (ref. 2) have considered the maximum range problem for fixed fuel. These 
studies involved thrust-limited rocket vehicles and assumed a uniform gravitational field 
and a soft landing. Both studies 
have been applied to lunar flight. The results of these studies are valid if the resultant 
range is less  than about 30 miles (48.28 km). For longer ranges both the curvature of the 
lunar surface and nonuniform gravitational field must be taken into account. Needham 
(ref. 3) has considered minimum-fuel thrust-limited trajectories with fixed range between 
points of launch and soft landing on a spherical moon with a Keplerian gravitational field. 

A soft landing is defined as one with near-zero velocity. 



The longest range reported is about 65 miles (104.6 km) for a rocket vehicle with an 
initial lunar thrust-weight ratio of 2.4.  Computational difficulties precluded Needham 
obtaining solutions with longer ranges. Needham noted the desirability of an effective 
computational procedure to solve such problems. 

The purpose of this paper is to demonstrate a highly effective computational proce- 
dure for  obtaining optimal thrust -limited rocket trajectories in  a vacuum and a Keplerian 
gravity field. 
control theory (ref. 4) with an initial-value algorithm for the solution of two-point 
boundary-value problems developed by Armstrong (ref. 5). Other applications of the 
procedure than those given in the present paper may be found in references 5, 6, and 7.  

This procedure combines the Pontryagin maximum principle of optimal 

The dynamic equations for the present application a r e  presented in nondimensional 
form. The trajectories a r e  assumed to lie in a plane containing the center of gravitational 
attraction and the rocket launch position. The Pontryagin maximum principle is applied to 
obtain necessary conditions for maximal range with specified fuel. The application of the 
maximum principle leads to a two-point boundary-value problem which is solved by the 
initial-value algorithm. The procedure is exemplified by the lunar maximum-range- 
fixed-fuel flight of a rocket vehicle with an initial lunar thrust-weight ratio of 5. A 
family of extrema1 solutions with payload weight as parameter and the longest ranges 
about one-half the circumference of the moon is reported herein. Also, comparisons are 
made between the theoretical necessary conditions of the maximum principle for maximum 
range with fixed fuel and minimum fuel with fixed range and it is noted where the condi- 
tions coincide. The trajectories reported are shown to qualify as minimum-fuel solutions 
between their points of take-off and landing. 

SYMBOLS 

ai j elements of the matrix 2 (i , j  = 1,2,3) 
G 

B diagonzl weighting matrix 

elements of the matrix B (i = 1,2,3) bi 

C effective exhaust velocity 

El: 1 scalar quantity measuring magnitude of 

E energy 
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Pi 

r 

T 

t 

ai 

Y 

6Z 

e r ro r  vector 

switching function (see eq. (8)) 

gravitational acceleration 

Pontryagin pseudo-Hamiltonian (see eq. (4)) 

third-order identity matrix 

indices 

performance index 

angular momentum 

mass 

Pontryagin auxiliary variables for maximum range problem (i = 0,. . . ,5) 

radial polar coordinate 

thrust 

time 

switching t imes 

initial weight 

final weight 

parameter vector 

elements of vector 

conditioning constant 

parameter correction vector 

(i = 1,2,3) 
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E 

e 

Subscripts: 

f 

max 

0 

eccentricity 

angular polar coordinate 

Pontryagin auxiliary variables for minimum fuel problem (i = O , l , .  . .y5) 

gravitational constant 

control angle 

final 

maximum 

initial 

Operations: 

(7 ( ) dimensionalized 

( *  ) 

(3 

( ) differentiated with respect to time 

( ) twice differentiated with respect to time 

- 
gradient of ( ) in the direction of the vector a! a( ) 

a; 
- 

partial derivative of ( ) with respect to a! (j = 1,2,3) a( 1 
aaj j 
- 

diag( , ) matrix with diagonal elements ( , ) 

f matrix transpose 

identic ally equal - - - 

(J; [ ); [ J; ( ) intervals on the real  line 
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ANALYSIS 

Dynamic Equations 

Figure 1 shows the coordinate system and force diagram for the problem. The 
equations of motion for two-dimensional motion above an atmosphereless spherical 
planet with an inverse-square-law gravitational field a r e  

where 

r ,6 polar coordinates 

T thrust magnitude (0 

- 

- 

I r m  r 

* angle between thrust and radius 

- 
m vehicle mass 

- 
C rocket -engine effective exhaust speed 

- 
P gravitational constant 

Launch from rest ,  soft landing on the planetary surface, and maximized range give the 
following initial and terminal conditions: 

FF0) = To 

+to) = 0 

OFo) = 0 

8(T0) = 0 
- 

=(To) = Eo J Z(Tf) = iiif 

i 6(Tf) maximized 

- 
e (Tf) = 0 
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where the subscripts o and f indicate the initial and final values of the variables. 
Equations (la) and (lb) are nondimensionalized by use of the following relations: 

- 
g -  r =-r -2 C 

I 

T T=-- 
Tmax 

where the variables on the left a r e  nondimensional, the surface gravitational acceleration - - I-L 
- 2  
rO 

is = -, and the maximum thrust capability of rocket engines is TmU. Nondimen- 

sional equations corresponding to equations (la) are: 

The associated nondimensional initial and terminal conditions for equations (2) a r e  given 
by equations (lb) without the bar notation. 

Equations of Optimal Control 

The Pontryagin maximum principle (ref. 4) is employed to obtain the equations for 
the optimal thrust magnitude and direction to maneuver the rocket from launch to a soft 
landing while e(t,) is maximized. Maximizing B(tf)  is equivalent to  minimizing the 
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Lagrangian performance index 

J = - e dt = -B(tf) 
0 

The problem is mathematically much like the determination 

( 3) 

of Hamilton's canonical 
equations from Hamilton's principle for conservative systems. In the present case, how- 
ever, the minimization of J is an optimization which is required in addition to  the satis- 
faction of the principle and there are nonconservative forces involved. 
optimization is possible because the control (a force) is left free to determine. 
resulting equations, however, are canonically similar. 
to  the present problem states that in order for the integral J of equation (3) to be mini- 
mized, it is necessary that the following conditions be satisfied. 

This additional 
The 

The maximum principle as applied 

The controls T (0 2 T 5 1) and q must be chosen to maximize the so-called 
"Pontryagin pseudo-Hamiltonian" (mathematically analogous to the Hamiltonian of classi- 
cal mechanics) which is given by 

-2 T COS + T sin + - e) - p5T H = -poi + plr  + p2(r, + m - F) r2  + P36 + P4( rm r 

with the auxiliary variables (mathematically analogous to the conjugate momenta of 
classical mechanics) pi (i = O , l , .  . .,5) satisfying 

Po 5 0 

e 
P2 = -P1 + 2P4 r 

p3 = 0 

i. P4 = p0 - 2p2re - p3 + 2p4 

(P3Pf) = 0) 

(4) 
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Also, when the end t ime tf is not specified 

H(t) = 0 

The controls as derived in reference 8 are given by 

T = l  

T = O  

where the switching function for the rocket engine is 

P2 cos + P4 sin + 
- p5 fs = + 

m r m  

and, for T # 0, 

sin + = 

or  

p4 
TP2 tan + = - 

(to 5 t S Q )  (6) 

It is shown in reference 9 that trajectories occurring with fs(t) = 0 over a nonzero 
time interval in ko,tf] (singular trajectories) cannot be optimal for minimizing fuel. 
The same proof demonstrates that singular trajectories cannot be optimal for maximizing 
range. Such trajectories will therefore not be considered. The variable p5(t) for con- 
venience may be eliminated from the problem and replaced by fs(t) as follows. Differ- 
entiating f,(t) given by equation (8) with respect to t and making use of equations (5) 
and (9) gives 

8 



which is independent of p5. 

Setting H(t) to zero at t = to and making use of the nondimensional initial condi- 
tions gives 

= 0. If fs(to) > 0, then from - 4 t o )  I.1 

r02 
It is assumed that fs(to) 2 0. If fs(to) = 0, then 

equation (7) T(to) = 1. In either case, 

The variable p5(t) may thus be eliminated and replaced by the differential equation (11) 
with initial condition (12) 

Also abnormal (po = 0) solutions (ref. 10, pp. 633-637) are not considered and for 

From equations (7) it is seen that along a maximal range trajectory, the rocket burns 

convenience po is taken as -1. 

with maximal burning rate  T = 1 while fs > 0, and coasts T = 0 along a Keplerian arc 
while fs < 0. With to interpreted as the launch time, the rocket burns with T = 1 
from t = to until such a time tl as fs changes to a negative value. The rocket then 
coasts until such a time t2 as fs  again becomes positive. This process continues 
until the first time tf for which m(t) = mf. Along the burning portions of the trajec- 
tory, the thrust direction is determined by equation (9) or  (10). For the solutions pre- 
sented, it was  found 
could be characterized by 
rated by a single coast 
and final mass  and the 

changed sign twice and the trajectories 

Then tf in t e rms  of the specified initial 
and final (t E (t2,tf]) burn periods sepa- 

When the results are collected, it is seen that extrema1 maximum range trajectories 
satisfy the following set of simultaneous differential equations: 

9 



($= Tp4 2i- e 
r 

m r  - - 

($to) = B(t0) = S(tf) = 0) 

where 

T = l  (fs ' 0) 

In order to solve these equations, it is necessary to solve numerically a two-point 
boundary-value problem. 

10 



With the following parameters  given: 

'(to) = 0 

€(to) = 0 

B(to) = 0 

'(tf) = 0 

"tf) = 0 

The method used to solve this boundary-value problem is that discussed in reference 5 
and outlined in appendix A. 
equations (14) has been programed for the Control Data 6600 electronic data processing 
system with the Fortran IV language. The program represents a useful computational 
procedure for the study of the class  of thrust-limited maximum-range problems consid- 
ered in this paper. A copy of the computer program is available from the authors upon 
request. A typical family of solutions for the lunar surface is presented in the next 
section. 

The general solution of the boundary-value problem given by 

RESULTS 

Extrema1 maximal range results are presented for a rocket vehicle with an effective 
exhaust speed, initial mass, and maximal thrust capability of 

- 
c = 9853.2 ft/sec (3003.3 m/sec) 

mo = 132 slugs (1926 kg) 

Tmax = 3503.8 lb (15 585.7 N) 

- 

- 

11 



Taking the lunar surface acceleration due to gravity as 

- 
t2 

60.48 
138.9 
225.3 
357.7 
566.6 
856.9 

1329 
1738 
1954 
2085 
2233 
2404 
2723 
3000 

- 
g = 5.316 ft/sec2 (1.620 m/sec2) 

- 
tf 

69.62 
158.6 
255.3 
400.4 
624.0 
927.0 

1415 
1827 
2041 
2172 
2321 
2493 
2813 
3090 

gives an initial thrust-weight ratio of 

o r  

mo = 0.2 

The value of Fo was taken as 5.702 X 106 f t  (1.738 X lo6 m). 

Solutions were found for a set  of values of mf/mo (= &/Eo) obtained by fixing 
mo at 0.2 and varying mf so that mf/mo ranged from 0.95 to 0.326 in steps suffi- 
ciently small to assure convergence of the iterative procedure (see appendix A) used in 
solving equations (14). Each solution was found to have initial and final maximal thrust 
periods over the time intervals [to,td and (Tz,Tf], respectively, separated by a coast 
period over (tl,t2). Results needed to reconstruct the trajectories are given in table I. 
Solutions were not obtained below mf/mo = 0.326 because of convergence difficulties in 
the iterative procedure. Past this point the terminal values of F, r, and 6 became 
sufficiently insensitive to changes in the pi(to) (i = 1,2,4) to lower the convergence rate 
to a point where the acquisition of additional solutions was too expensive in t e rms  of com- 
puter time. This difficulty is reflected by the sharp increase in the values of the auxiliary 
variables at mf/mo = 0.326. 

- -  
- -  

- - 

TABLE I.- CHARACTERISTICS OF EXTFlEMAL MAXIMUM RANGE SOLUTIONS 

d a s s  ratic 

m f p 0  

0.95 
.89 
.83 
. I5  
.65 
.55 
.45 
.40 
.38 
.37 
.36 
.35 
,335 

a.326 

- 
Initial values of auxiliary variables 

dimensional I 
- 

~ %(to) 

0.01096 
.03552 
.07606 
,1647 
.3683 
.I797 

1.814 
3.118 
4.170 
4.932 
6.000 
7.650 

13.81 
74.94 

~ 

PZ(t0) 

0.05603 
,1288 
,2096 
,3355 
,5433 
.E569 

1.455 
2.072 
2.448 
2.706 
3.034 
3.478 
4.758 

13.49 

p4 eo) 

0.01884 
,04323 
.07041 
,1134 
,1873 
,3096 
.5923 
,9712 

1.256 
1.481 
1.802 
2.311 
4.278 

24.51 

Switching and final times, 
sec 

- 
t l  

9.414 
21.08 
33.19 
50.07 
72.71 
96.92 

123.5 
138.0 
143.6 
146.6 
149.7 
152.7 
157.2 
159.7 

miles Range (km) 

?oe(Tf) 

1.913 ( 3.175) 
10.27 ( 16.53 ) 
26.59 ( 42.79 ) 
64.96 ( 104.5 ) 

153.8 ( 247.5 ) 
321.1 ( 516.8 ) 
670.6 (1079 ) 
024 (1648 ) 

365 (2197 ) 
530 (2462 ) 
738 (2797 ) 
216 (3566 ) 
938 (4728 ) 

229 (1978 ) 

aNegative altitude during early part of trajectory. 
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In all cases  convergence w a s  obtained to within d o - 3  feet (3 X 10-4 m) of - 
F(5) = Fo, kO.1 ft/sec (0.03 m/sec) of +(&) = 0, and *lom6 rad/sec of 6 (G) = 0. 

F o r  each solution, p5&) > 0 whereby it is also a minimum fuel extremal. (See 
appendix B.) 

Figure 2 gives lunar surface range Toe (c) as a function of final to initial mass  
ratio Ef/ki0. Surface range appears to increase exponentially for  decreasing payload 
mf and thus indicates that for  larger  amounts of fuel, the extremal trajectories deliver 
many more units of range per  unit mass  of fuel. 

- 

As can be seen from table I, the duration of the coast periods increases for  
decreasing payload varying from about 74 percent of the total flight time for  
mf/mo = 0.95 to about 92 percent for  mf/mo = 0.326. Fo r  all values of mf/mo, the 
range accrued over the coast period was found to  be the predominant part  of the total 
range and, overall, the range accrued over the coast periods increased with increasing 
fuel. The percentage of fuel used for injection into the coast phase increased with 
increasing fuel supply and ranged from 3.7 percent m mo = 0.95) to 43 percent 
(mf/mo = 0.326). 

( f/ 

F o r  all mf/mo the coast orbits were elliptic and became nearly parabolic for 
mf/mo = 0.95. Figure 3 shows the coast phase eccentricity as a function of mf/mo. 
The trajectories displayed increasing coast energy and angular momentum for  
increasing fuel supply. Maximal radial distances on the trajectories occurred during 
the coast periods. Maximal altitude Fmax - ro as a function of surface range Foe (q) 
is shown in figure 4. The points of maximal radial distance a r e  a lso the points of mini- 
mal 4 .  Figure 5 shows that the minimal 5 a t  the peak altitudes on the coast orbits 
increases with fuel supply. The behavior of Fmax - ro in figure 4 may be explained 
by recalling that over the coast periods, 

- 

- 

- 

- 
and noting that, for given angular momentum and mass  E, minimal 8 may be 
increased by decreasing Tmax. However, the case of a low orbit is tempered by the 
fact that lower orbits possess higher kinetic energy which must be dissipated to make a 
soft landing. Thus, lowering the orbit is postponed until the payload is sufficiently small 
to give a large deceleration capacity for soft landing. 

Figure 6 presents detailed results for  mf/mo = 0.65. Figure 6(a) gives the thrust 
angle IC/ over the launch and landing phases. The angle IC/ is undefined over the coast 
phase. Figure 6(b) gives altitude F - ro as a function of range FoO(T). Figure 6(c) - 

13 



gives altitude as a function of flight time. Figures 6(d) and 6(e) give radial ?- and 
tangential F6 velocity time histories. Figure 7 gives similar results for  
Ef/mo = 0.335. 

- 

The general characteristics given in figure 6 for  mf/mo are typical of the inter- 
mediate range solutions. Results for  a typical long-range solution mf mo - 0.335 are 
given in figure 7. 
which a solution was obtained. 
during the initial thrusting phase. 

90° - I) is less than 11O32' = sine1 

to be less than the gravitational force. 

/ -  
Figure 8 presents results for  mf/mo = 0.326, the smallest ratio for 

For  this case a dip beneath the lunar surface is noted 
Such dips will always occur when the initial angle 

and causes the radial component of thrust 
Tin ax 

From figure 3 i t  appears that for  some value of mf/mo less than 0.326 (approxi- 

This curve is not as 
mately 0.320 by extrapolation), the coast trajectory will become circular. 
shows coast orbit eccentricity as a function of maximal altitude. 
easily extrapolated as that of figure 3 to estimate the altitude of the circular orbit. 
However, the specific energy (energy per unit mass) of the coast orbits is monotoni- 
cally increasing for  decreasing mf/mo with E/m = -1.5291 X lo7  ft2/sec4 
(-0.1421 x 107 m2/sec4) for  mf/mo = 0.326 and E/m = -& = -1.5154 X 107 ft2/sec4 

(-0.1408 x 107 m2/sec4) for a circular orbit about the lunar surface. It is thus con- 
jectured that the circular orbit will have near-zero altitude. Since no altitude con- 
straints have been theoretically imposed, the thrusting part of this trajectory may con- 
tain negative altitudes as did the mf/mo = 0.326 case. 

Figure 9 

2r0 

If i t  is recalled that the range accrued over the coast phase was, in all solutions 
obtained, the predominant part of the total range, i t  is evident that the most important 
characteristic of each extremal is the coast phase. This result should follow for  other 
lunar rocket vehicles as well  as for  the one considered herein. 
may not be possible to follow exactly an extremal trajectory for  a given vehicle and value 
of mf/mo, an attempt could be made to achieve the corresponding coast phase as effi- 
ciently as possible. 

Although, in practice, i t  

In this way near theoretical extremal range should be obtained. 

Solutions for rocket-engine configurations different from the one considered herein 
may be similarly obtained by the computational procedure presented. 

CONCLUDING REMARKS 

A program for  obtaining maximum-range thrust-limited rocket trajectories between 
points of launch and soft landing on the surface of an atmosphereless planet has been 
described. An application of the program for the lunar surface has produced trajectories 

14 



fo r  a vehicle with a lunar thrust-weight ratio of 5.0. Results are presented for  final to 
initial mass  ratios from 0.95 to 0.326, the longest trajectory being about 3000 miles 
(4827.9 km). The trajectories presented were shown in an appendix to qualify as mini- 
mum fuel extremals between the points of launch and soft landing. 

Since the primary purpose of this paper is the demonstration of the capability of 
calculating long maximum range trajectories in a Keplerian gravitational field, results 
have only been obtained and presented for  one value of lunar thrust-weight ratio. How- 
ever, two facts are clear from the results given. First, as fully expected, the range 
accrued during the coast period was found to be the predominant part  of the total range. 
Thus, it may very well be possible to develop excellent suboptimal trajectories by using 
the same coasting phase with more  practical thrusting phases (especially for  the "dip" 
trajectories). Secondly, for la rger  amounts of fuel, the extremal trajectories deliver 
more  units of range p e r  unit m a s s  of fuel; that is, for  longer ranges, the trajectories are 
increasingly efficient. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., May 27, 1970. 
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APPENDIX A 

SOLUTION OF THE BOUNDARY-VALUE PROBLEM 

The approach taken to obtain solutions of the boundary-value problem represented 
by equations (14) is an iterative method discussed in reference 5. In reference 5, for a 
similar boundary-value problem, a vector g(z,h) is defined so that when g(z,$) = 0, 
the terminal boundary conditions are satisfied and the unknown initial conditions are zr' 
where the arrows indicate vector quantities. For the problem at hand, 

- 

and 

The argument Z is included in r( z,tf), 
dependence on z through equations (14) and also serves  to indicate that a specific Z 
was used to obtain the value of the variable at 

(z,h), and 6 (z,h) to indicate their implicit 

4. 
The magnitude of g('t;,tf) is measured by a scalar quantity 

where B is a positive definite diagonal matrix of weighting elements and primes 
denote a matrix transpose. Here 

where 

16 
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APPENDIX A - Continued 

Initially, a value of G is assumed, the differential equations (14) are integrated 
forward in time until the first time at which 

m(t) - mf = 0 

and Z(Z,tf) is evaluated. If Z(Z,tf) vanishes, or, for  numerical purposes, is suffi- 
ciently small, the boundary-value problem is considered to be solved. Otherwise, the 
assumed Z is corrected by 

where the superscript -1 denotes a matrix inverse, I3 is a 3 by 3 identity matrix, 
and y > O  is adjusted so that 

The increment Stf is added to tf in the expression (A6) since the final time for 
which m(t) - mf = 0 by using Z may not be the same as that obtained by using Z + G'. 
For this problem z ( Z , t f )  is a 3 by 3 matrix with elements %j (i = 1,2,3; j = 1,2,3) 

given by 
a a  

The quantities in equations (A") are obtained by finding simultaneous solutions a t  
tf of equations (14) and a set  of sensitivity equations derived as shown in reference 5 
(p. 21, case (3c)) with tf determined through 

m(t) - mf = 0 

With the correction G computed, the assumed Z is replaced by Z + €6 and the 
process is repeated by treating Z + €6 as the assumed value. 

17 



APPENDIX A - Concluded 

For  the results of this paper, initial assumed values of were obtained by using 
a small amount of fuel and the results of reference 2 for  the shorter trajectories and 
then using the 5 from the last obtained solution as an initial guess for larger  amounts 
of fuel. In each case 

B = dhg(l,l,l) 

This approach for obtaining assumed values for  
thrust-weight ratio other than 5.0. 

is also suggested for  values of initial 

i a  



APPENDIX B 

( e (  tf) maximized, m( ti) specified) 

RELATIONSHIPS BETWEEN THE MAXIMUM RANGE 

AND MINIMUM FUEL PROBLEMS 

(e(+) specified, m, - mf minimized) 

In this section comparisons are drawn between the necessary conditions of the 
Pontryagin maximum principle as applied to the maximum-range-fixed-fuel and 
minimum-fuel-fixed-range problems. Each problem is for a rocket vehicle launched 
from rest and executing a soft landing on the surface of a spherical planet with an  
inver se-square-law gravity field. 

The necessary conditions of both problems a r e  summarized in the following chart. 
Conditions common to both problems are centered in the chart. The auxiliary variables 
of the maximum principle are denoted by pi for the maximum-range-fixed-fuel prob- 
lem and by X i  for the minimum-fuel-fixed-range problem. 

NECESSARY CONDITIONS FOR THE MAXIMUM RANGE AND MINIMUM FUEL PROBLEMS 

Minimum Fuel-Fixed Range 1 ,  Maximum Range-Fixed Fuel 

The nondimensional dynamic equations for both problems are 

m = -T (m(to) = %) 

where 0 5 T 5 1, t i  unspecified 

I 
I n  in tegra l  form minimize 

I 
Application of the  Pontryagin Maximum Principle  leads t o  the  

necessary conditions 

r 

19 



p2 cos Jc ~4 sin $ 
f =-+-- 

m rm p5 

p2 
cos Jr  = 

{ F G p  
P4 

sin \Ir = 

h2 cos $ h4 sin Jc 
f =- +-- (15 - &I) ' 6  m 

T sin Jc 2 4  
+ (P3 - Po)B + P4(- - T) 
- p T - = O  

5 

th 

h4 sin Jc 

+ h i, + h4CT T sin Jr - E )  " 

3 

- (Ag - ho) T E 0 

Given an extremal maximum range solution with specified fuel expenditure mo - mf 
and pg(tf) 2 0, this same solution can be made to satisfy the necessary conditions f o r  
fuel optimality between the maximum range launch and landing points with extrema1 
fuel given by mo - mf by making the identification 
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APPENDIX B - Concluded 

In order to satisfy X5(tf) = 0, let 

= -P5(tf) 

M S O  ~ 3 ( t f )  = -PO follows from p 3 ( 9  = 0. 

Likewise, if given an extremal minimum fuel solution with extremal f ina l  mass  mf, 
specified range angle e(tf), and X3(tf) 2 0, this same solution can be made to satisfy the 
necessary conditions for  maximal range with specified final mass  mf and extremal 
range angle O ( Q )  by making the identification . 

In order to satisfy p3(tf) = 0, let 

Each of the maximum range extremals presented as results in this paper had 
p5(tf) > O  whereby they a r e  minimum fuel extremals. 

The program may thus be used to construct minimum fuel extremals by finding a 
maximum range extremal which achieves the desired range and then checking to deter- 
mine whether p5(Q) > 0. 
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